28 Jan. 2015, Joint Winter Conference on Particle Physics, String and Cosmology

The Status of KIMS-NaI Experiment

Kim, Kyungwon Center for Underground Physics (IBS), Seoul National University

On behalf of the KIMS-NaI collaboration

Searches for WIMP

KIMS experiment

@ Yangyang Underground Laboratory - Minimum depth: 700 m

KIMS-CsI

Motivation of KIMS-NaI

We want to confirm Na signal model independently.

Motivation of KIMS-NaI

ANAIS @ Canfranc (2000~)

(2x) 8.5-kg Nal(Tl) modules

DM-ICE @ South pole (2011~)

arXiv:1401.4804

KIMS-Nal Detector

• Two NaI(TI) crystals by Alpha Spectra company in US

NaI-001 (Aug. 2013) 5"(D) X 7"(L), 8.26 kg NaI-002 (Dec. 2013) 4.2"(D) X 11"(L), 9.2 kg

NaI-001 crystal only

NaI-001, NaI-002 installed

High Light yield ~ 15 p.e./keV

Background reduction

Background reduction

After DAMA cut applied

Even after DAMA cut, we still have PMT noise.

Low Energy Spectrum

We can reject remained PMT noise after several cuts are applied.

Internal background – ⁴⁰K

Measured by coincidence with CsI detectors

Based on GEANT-4 simulation

Internal background – ²³⁸U, ²³²Th, ²¹⁰Pb

Radionuclei	NaI-001 [mBq/kg]	NaI-002 [mBq/kg]	
²³⁸ U (²¹⁴ Bi)	<0.0003	<0.0015	
²²⁸ Th (²¹⁶ Po)	<0.013	0.002±0.001	
⁴⁰ K	1.25±0.09	1.49±0.07	
²¹⁰ Pb	3.28±0.01	1.76±0.01	
Total alphas	3.29±0.01	1.77±0.01	

Confirmation of Rn contamination

²¹⁰Pb is due to Rn contamination when crystal was grown. We can estimate crystal manufactured date using alpha rate change.

Internal background – simulation

Background simulations of ⁴⁰K, ²¹⁰Pb, ²³⁸U and ²³²Th (full chain)

Significant internal backgrounds at low energy are ⁴⁰K, ²¹⁰Pb. Other backgrounds (including PMT) are under study.

New crystals test

More crystals were tested to get low background crystal.

NaI003 (Aug. 2014) 4.5"(D) X 3.5"(L), 3.3 kg **Astro** Grade powder

NaI004 (Aug. 2014) 4.5"(D) X 3.5"(L), 3.3 kg **Crystal** Grade powder

NaI006 (Jan. 2015) 110mm(D)X200mm(L), ~10kg, Crystal Grade

New crystals test

Name	Mass (kg)	Powder	Crystal	²¹⁰ Pb (mBq/kg)	⁴⁰ K (ppb)
NaI001	8.26	AS	Alpha spectra	3.29	41.4
NaI002	9.15	AS	Alpha spectra	1.77	49.3
NaI003	3.3	AS Astro grade	Alpha spectra	~2	25.12
NaI004	3.3	AS Crystal grade	Alpha spectra		115.25
NaI005	9.15	AS WIMP Scint II	Alpha spectra	0.44	40.13
NaI006	~ 10	SA Crystal grade	Beijing Hamamatsu		

New crystals test – NaI005

Liquid Scintillator veto system

• Veto efficiency in the low energy region of (0, 10 keV) (Based on Geant-4 simulation) ⁴⁰K: ~ 27% ²³²Th: ~75% ²³⁸U: ~78% 4x4 NaI(Tl) array B0cm PE **Liquid Scintillator** active source point 1 point 2 point 3 point 4

door part (side view)

Various backgrounds can be reduced by liquid scintillator veto system.

PSD analysis of first crystal

PSD analysis of first crystal

Expected limit using PSD – 100 kg, 1 year of data taking

Summary

- KIMS-NaI has been taking data with two NaI(Tl) crystals.
 High light yield: ~ 15 photoelectrons/keV
- We have confirmed PMT noise reduction by "DAMA cut"
 - Observed additional PMT noise which was not removed by "DAMA cut".
- Internal backgrounds from U, Th, Pb, K are studied.
- More NaI(Tl) crystals are installed and test is ongoing.
- NaI005 which is processed with new method has low background level. (2 cpd @ 6 keV, ²¹⁰Pb ~ 0.5mBq/kg)
- PSD analysis of first crystal is under study.

Prospects

Goal:

- Background level < 0.5 counts/day/kg/keV</p>
- Threshold ~ 1 keV.
- Ultra-Pure crystals (internal backgrounds)
 Mass production will be started within a year.
- Low background PMTs (external backgrounds)
 - Low background PMT from Hamamatsu
 - Decision of PMTs will be done within a year.
- Shielding design (external backgrounds)
 LS veto system (prototype) will be setup soon.
- We plan to run 100 kg from early of next year.

Backup Slides

Background – Cosmic excitation: ²²Na

This can be used to study 1 keV energy signal.